AAA TACACS+ and RADIUS Tutorial

October 18th, 2018 in CCNA Knowledge

Nowadays, security plays an important role in a company. Without any security solution implementation on our network, a user can simply “plug and play” into our network. The user may simple pick up a valid IP address or be assigned one automatically via DHCP. It is convenient, but not a good way if your network contains sensitive data. Worse, this user may have all the rights to your network so he can do dangerous things.

When your company grows bigger and bigger, there is a moment that you need to consider implementing security to your network. There are many ways to secure a network but AAA offers a complete solution. In this tutorial let’s find out about this security feature.

Before diving into AAA, let’s take an example of a user who wants to connect to our network.

AAA_initial_without_AAA.jpg

READ MORE…

GRE Tunnel Tutorial

April 26th, 2018 in CCNA Knowledge

GRE stands for Generic Routing Encapsulation, which is a very simple form of tunneling. With GRE we can easily create a virtual link between routers and allow them to be directly connected, even if they physically aren’t. Let’s have a look at the topology below:

GRE_Tunnel.jpg

Suppose R1 and R2 are routers at two far ends of our company. They are connected to two computers who want to communicate. Although R1 and R2 are not physically connected to each other but with GRE Tunnel, they appear to be! This is great when you have multiple end points and don’t care the path between them. The routing tables of two routers show that they are directly connected via GRE Tunnel.

READ MORE…

Basic MPLS Tutorial

February 23rd, 2018 in CCNA Knowledge

MPLS is a new forwarding mechanism called “label switching” in which packets are forwarded based on labels. However, hosts are unaware about labeled packets so routers will need to add a label when entering “MPLS area” and remove that label after leaving there.

The idea of label switching is to have only the first router do an IP lookup and assign a label, then all future routes in the network can “cheat” by doing exact match “switching” based on a label. This would reduce load on the core routers, where high-performance was the most difficult to achieve, and distribute the routing lookups across lower speed edge routers.

In a traditional IP network:
* Each router performs an IP lookup (“routing”), determines a next-hop based on its routing table, and forwards the packet to that next-hop.
* Rinse and repeat for every router, each making its own independent routing decisions, until the final destination is reached.
MPLS does “label switching” instead:
* The first device does a routing lookup, just like before.
* But instead of finding a next-hop, it finds the final destination router.
* And it finds a pre-determined path from “here” to that final router.
* The router applies a “label” (or “shim”) based on this information.
* Future routers use the label to route the traffic without needing to perform any additional IP lookups.
* At the final destination router, the label is removed and the packet is delivered via normal IP routing.

Therefore in an MPLS network, data packets are assigned labels. Packet-forwarding decisions are made solely on the contents of this label, without the need to examine the packet itself.

READ MORE…

TCP and UDP Tutorial

September 20th, 2016 in CCNA Knowledge

The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the two most popular protocols in the transport layer. They ensures that messages are delivered error-free, in sequence, and with no losses or duplication. The key difference between TCP and UDP is that TCP provides a wide variety of services to applications, whereas UDP does not. At the result of this, TCP is much more complex than UDP so this tutorial is dedicated to explore TCP in detail but we still compare them.

TCP_UDP.jpg

Both TCP and UDP are protocols at the Transport layer (of both OSI and TCP/IP model) but why we need both of them? The answer is:

+ TCP is slower but reliable
+ UDP is faster but unreliable

READ MORE…

Border Gateway Protocol BGP Tutorial

August 25th, 2016 in CCNA Knowledge

Basic understanding about BGP

We really want to show you why we need BGP first but it is very difficult to explain without understanding a bit about BGP. So we will learn some basic knowledge about BGP first.

First we need to understand about the different between Interior Gateway Protocol and Exterior Gateway Protocol. The difference between them is shown below:

IGP_EGP.jpg

Interior Gateway Protocol (IGP): A routing protocol operating within an Autonomous System (AS) like OSPF, EIGRP… Usually routers running IGP are under the same administration (of a company, corporation, individual)
Exterior Gateway Protocol (EGP): A routing protocol operating between different AS. BGP is the only EGP used nowadays

READ MORE…

NetFlow Tutorial

May 13th, 2016 in CCNA Knowledge

Note: NetFlow is no longer a topic in CCNAv3 200-125 exam.

One of the most important tasks of a network administrator is to monitor the health of our networks, learn how our bandwidth is being used, what applications are consuming it, when it needs upgrade… Although monitoring protocols like SNMP and SPAN (port mirroring) can help us answer some questions but they are not enough to give us an insightful view of our networks. Luckily we have another amazing tool: NetFlow!

NetFlow is a networking analysis protocol that gives the ability to collect detailed information about network traffic as it flows through a router interface. NetFlow helps network administrators answers the questions of who (users), what (application), when (time of day), where (source and destination IP addresses) and how network traffic is flowing.

Let’s take an example! In the topology below, when traffic from Network 1, 2, 3… passes through the interfaces of a NetFlow enabled device, relevant information is captured and stored in the NetFlow cache. NetFlow collects IP traffic information as records and sends them to a NetFlow collector for traffic flow analysis.

NetFlow_example.jpg

READ MORE…

Point to Point Protocol (PPP) Tutorial

March 11th, 2016 in CCNA Knowledge

Point-to-Point Protocol (PPP) is an open standard protocol that is mostly used to provide connections over point-to-point serial links. The main purpose of PPP is to transport Layer 3 packets over a Data Link layer point-to-point link. PPP can be configured on:
+ Asynchronous serial connection like Plain old telephone service (POTS) dial-up
+ Synchronous serial connection like Integrated Services for Digital Network (ISDN) or point-to-point leased lines.

PPP consists of two sub-protocols:
+ Link Control Protocol (LCP): set up and negotiate control options on the Data Link Layer (OSI Layer 2). After finishing setting up the link, it uses NCP.
+ Network control Protocol (NCP): negotiate optional configuration parameters and facilitate for the Network Layer (OSI Layer 3). In other words, it makes sure IP and other protocols can operate correctly on PPP link

PPP_NCP_LCP.jpg

READ MORE…

WAN Tutorial

March 8th, 2016 in CCNA Knowledge

Unlike LAN which is used effectively in relatively small geographic areas, WAN services help connect networks at a broad geographic distance, from a few to thousands of kilometers. Let’s see the network below, while LANs are used inside buildings like Home, Office, Internet Service Provider (ISP)… WANs are often used to connect between them. By the way, Internet is the largest WAN nowadays.

WAN_connections.jpg

Because of long distance connection, individuals usually do not own WAN (unlike LAN which they often own it). They do not have the rights to bury a long cable between buildings either. Therefore they hire available network service providers, such as ISPs, cable or telephone companies… in their cities instead. This helps reduce the connection cost very much.

READ MORE…

DHCP Tutorial

June 18th, 2015 in CCNA Knowledge

In IP environment, before a computer can communicate to another one, they need to have their own IP addresses. There are two ways of configuring an IP address on a device:
+ Statically assign an IP address. This means we manually type an IP address for this computer
+ Use a protocol so that the computer can obtain its IP address automatically (dynamically). The most popular protocol nowadays to do this task is called Dynamic Host Configuration Protocol (DHCP) and we will learn about it in this tutorial.

A big advantage of using DHCP is the ability to join a network without knowing detail about it. For example you go to a coffee shop, with DHCP enabled on your computer, you can go online without doing anything. Next day you go online at your school and you don’t have to configure anything either even though the networks of the coffee shop and your school are different (for example, the network of the coffee shop is 192.168.1.0/24 while that of your company is 10.0.0.0/8). Really nice, right? Without DHCP, you have to ask someone who knows about the networks at your location then manually choosing an IP address in that range. In bad situation, your chosen IP can be same as someone else who is also using that network and an address conflict may occur. So how can DHCP obtain an suitable IP address for you automatically? Let’s find out.

DHCP_Advantages.jpg

READ MORE…

Simple Network Management Protocol SNMP Tutorial

June 16th, 2014 in CCNA Knowledge

Building a working network is important but monitoring its health is as important as building it. Luckily we have tools to make administrator’s life easier and SNMP is one among of them. SNMP presents in most of the network regardless of the size of that network. And understanding how SNMP works is really important and that what we will learn in this tutorial.

Understand SNMP

SNMP consists of 3 items:

+ SNMP Manager (sometimes called Network Management System – NMS): a software runs on the device of the network administrator (in most case, a computer) to monitor the network.
+ SNMP Agent: a software runs on network devices that we want to monitor (router, switch, server…)
+ Management Information Base (MIB): is the collection of managed objects. This components makes sure that the data exchange between the manager and the agent remains structured. In other words, MIB contains a set of questions that the SNMP Manager can ask the Agent (and the Agent can understand them). MIB is commonly shared between the Agent and Manager.

SNMP_Components.jpg

READ MORE…

Syslog Tutorial

May 22nd, 2014 in CCNA Knowledge

As an administrator of a network, you have just completed all the configuration and they are working nicely. Now maybe the next thing you want to do is to set up something that can alert you when something goes wrong or down in your network. Syslog is an excellent tool for system monitoring and is almost always included in your distribution.

Places to store and display syslog messages

There are some places we can send syslog messages to:

Place to store syslog messages Command to use
Internal buffer (inside a switch or router) logging buffered [size]
Syslog server logging
Flash memory logging file flash:filename
Nonconsole terminal (VTY connection…) terminal monitor
Console line logging console

Note: If sent to a syslog server, messages are sent on UDP port 514.

By default, Cisco routers and switches send log messages to the console. We should use a syslog server to contain our logging messages with the logging command. Syslog server is the most popular place to store logging messages and administrators can easily monitor the wealth of their networks based on the received information.

READ MORE…

Gateway Load Balancing Protocol GLBP Tutorial

May 4th, 2014 in CCNA Knowledge

The main disadvantage of HSRP and VRRP is that only one gateway is elected to be the active gateway and used to forward traffic whilst the rest are unused until the active one fails. Gateway Load Balancing Protocol (GLBP) is a Cisco proprietary protocol and performs the similar function to HSRP and VRRP but it supports load balancing among members in a GLBP group. In this tutorial, we will learn how GLBP works.

Note: Although we can partially configure load balancing via HSRP or VRRP using multiple groups but we have to assign different default gateways on the hosts. If one group fails, we must reconfigure the default gateways on the hosts, which results in extra administrative burden.

GLBP Election

When the routers are configured to a GLBP group, they first elect one gateway to be the Active Virtual Gateway (AVG) for that group. The election is based on the priority of each gateway (highest priority wins). If all of them have the same priority then the gateway with the highest real IP address becomes the AVG. The AVG, in turn, assigns a virtual MAC address to each member of the GLBP group. Each gateway which is assigned a virtual MAC address is called Active Virtual Forwarder (AVF). A GLBP group only has a maximum of four AVFs. If there are more than 4 gateways in a GLBP group then the rest will become Standby Virtual Forwarder (SVF) which will take the place of a AVF in case of failure. The virtual MAC address in GLBP is 0007.b400.xxyy where xx is the GLBP group number and yy is the different number of each gateway (01, 02, 03…).

Note:
+ In this tutorial, the words “gateway” and “router” are use interchangeable. In fact, GLBP can run on both router and switch so the word “gateway”, which can represent for both router and switch, is better to describe GLBP.
+ For switch, GLBP is supported only on Cisco 4500 and 6500 series.

The gateway with the highest priority among the remaining ones is elected the Standby AVG (SVG) which will take the role of the AVG in the case it is down.

GLBP_topology.jpg

READ MORE…